Gap Detection for Genome-Scale Constraint-Based Models

نویسندگان

  • J. Paul Brooks
  • William P. Burns
  • Stephen S. Fong
  • Christopher M. Gowen
  • Seth B. Roberts
چکیده

Constraint-based metabolic models are currently the most comprehensive system-wide models of cellular metabolism. Several challenges arise when building an in silico constraint-based model of an organism that need to be addressed before flux balance analysis (FBA) can be applied for simulations. An algorithm called FBA-Gap is presented here that aids the construction of a working model based on plausible modifications to a given list of reactions that are known to occur in the organism. When applied to a working model, the algorithm gives a hypothesis concerning a minimal medium for sustaining the cell in culture. The utility of the algorithm is demonstrated in creating a new model organism and is applied to four existing working models for generating hypotheses about culture media. In modifying a partial metabolic reconstruction so that biomass may be produced using FBA, the proposed method is more efficient than a previously proposed method in that fewer new reactions are added to complete the model. The proposed method is also more accurate than other approaches in that only biologically plausible reactions and exchange reactions are used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...

متن کامل

Cell scale host-pathogen modeling: another branch in the evolution of constraint-based methods

Constraint-based models have become popular methods for systems biology as they enable the integration of complex, disparate datasets in a biologically cohesive framework that also supports the description of biological processes in terms of basic physicochemical constraints and relationships. The scope, scale, and application of genome scale models have grown from single cell bacteria to multi...

متن کامل

Principles of proteome allocation are revealed using proteomic data and genome-scale models

Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sec...

متن کامل

Advances in the integration of transcriptional regulatory information into genome-scale metabolic models

A major goal of systems biology is to build predictive computational models of cellular metabolism. Availability of complete genome sequences and wealth of legacy biochemical information has led to the reconstruction of genome-scale metabolic networks in the last 15 years for several organisms across the three domains of life. Due to paucity of information on kinetic parameters associated with ...

متن کامل

Introducing a New SYBR green Real-time PCR for Detection of SARS-CoV2 Virus Genome

Background and purpose: There are various methods for molecular detection of SARS-CoV2 genome among which, PCR-based methods are the most reliable for making diagnosis. The majority of approved PCR kits for detection of Coronavirus are based on TaqMan real-time PCR which is expensive due to incorporating fluorescent and quencher-harboring probe. The aim of this study was to design a simple and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012